Examination of Paints by Trace Element Analysis

The examination of paint in this laboratory and many others is done, essentially, by two techniques. These are microscopy, for the physical characteristics and layer structure, and pyrolysis gas chromatography (PGC), for the resin type. X-ray diffraction is often used as an additional examination for establishing the nature of pigment and is effective in routine cases, particularly those involving automobile paint of varied colors. Microscopy, however, is of limited value in cases involving white and black paints, whereas PGC is less effective than microscopy in dealing with household paints, most of which contain alkyd-type resins. The X-ray diffraction pattern of household paints generally shows only titanium dioxide $\left(\mathrm{TiO}_{2}\right)$ pigment and is of limited value. For the examination of white paints, therefore, we require an effective technique for differentiation. Analysis of the large number of trace elements contained in paint has been shown to be a useful technique in the discrimination of paints [1].

This project was aimed at discriminating white household paints by analysis of trace elements through neutron activation analysis (NAA).

Experimental

Neutron Activation Analysis

The irradiations were done for 4 h at 5 MW in the nuclear reactor at McMaster University, Hamilton, Ontario, Canada. The counting was done using a 4096-channel pulse height analyzer connected to a $\mathrm{Ge}(\mathrm{Li})$ detector. The data were collected on punched paper tape and processed by a Sigma 3 computer to locate peaks and their areas. The elements were identified from their gamma ray energies and half-lives. The concentrations were calculated using standard samples.

Household Paints

White household paint samples in liquid form were obtained from major manufacturers and were prepared by dipping a clean glass slide into each and air-drying the slides. Samples (less than 10 mg) were scraped off these slides for our experiments. At least duplicate samples were analyzed in each case.

Results and Discussion

The analysis showed the presence of the following elements: ytterbium, molybdenum, titanium, lutetium, mercury, chromium, gold, zinc, tungsten, copper, arsenic, antimony,

[^0]gallium, silver, iron, manganese, cadmium, and sodium. Generally the (n, γ) reaction was used. Under the conditions of our work, where the reactor is about 40 miles (64 km) away, short-lived nuclides cannot be measured. Among the above elements only Ti produces a short-lived (n, y) product. However, it produces ${ }^{47} \mathrm{Sc}$ as a result of ${ }^{47} \mathrm{Ti}$ $(\mathrm{n}, \mathrm{p})^{47} \mathrm{Sc}$ reaction which is long lived and gives a gamma ray peak at 155 keV . Titanium analysis was therefore made by measuring the ${ }^{47} \mathrm{Sc}$ produced.

The results are given in Table 1. Nearly half the samples analyzed were alkyd-based, and the pigment was TiO_{2} in all of them. The trace element composition of duplicate samples was generally within $\pm 10 \%$. Many of the samples are distinguishable on a qualitative basis. With several samples, however, quantitative data is necessary to distinguish them.

In some cases, some of the trace elements such as Hg, Cr, and Au , are not reproducible. This may be due to sample inhomogeneity or to the concentrations being at the sensitivity limit. Some of these problems can be solved by using larger samples or long irradiation times. In routine case work, it is advisable to analyze at least duplicates of each sample to determine what elements are significant and reproducible.
Neutron activation analysis can be routinely applied to case work. Its advantages are that it requires little of the examiner's time, sample preparation is minimal, and after irradiation is done (which does not require the examiner's time) the samples are counted nearly automatically. By using modern equipment with computer assistance, multielement quantitative analysis is done with a high degree of automation.

Automobile Paints

A set of 17 white and black paints from panels supplied by the manufacturer were analyzed, and the results are given in Table 2. The samples from different years by the same manufacturer were distinguishable, as were samples from the same year by different manufacturers. Again, both qualitative and quantitative analysis were effective.

Case Applications

Trace analysis by NAA is a useful method for differentiating paint samples, particularly with white and black paints and in those cases where samples are too small to give reasonably good quality pyrograms.

An application of NAA to a specific case involved a hit-and-run accident between two vehicles of almost identical yellow color. The microscopic and pyrolysis GC results were consistent. The gamma spectra are given in Figs. 1 to 4 . The quantitative analysis of major peaks is given in Table 3. The major peaks represent significant quantities of the elements where the reproducibility in duplicates is within $\pm 10 \%$. The results are consistent. The overlap of gamma spectra (which is equivalent to qualitative analysis) of control and suspect paints is noteworthy.

Summary

Trace element analysis using neutron activation analysis is effective and valuable, particularly in the examination of white household paint. Although physical appearance and resin composition are generally similar in these paint samples, trace element composition provides an effective way of distinguishing among them.

In the case of automobile paint samples, NAA serves as an important additional technique for discrimination. The technique is important when sample sizes are very small. The technique developed takes a few minutes for sample preparation, a few hours of irradiation time (during which the examiner's presence is not required), and
TABLE 1-Neutron activation analysis of white househole paints (measured in counts per minute for each milligram of sample).

Sample	yb	мо	Ti	Lu	Hg	Cr	Au	zn	w	Cu	As	sb	Ga	Ag	Fe	Mn	Cd	Na
Manufacturer No. 1																		
1	\ldots		2483	227		966		489	208	286	130	90	90	1696		1384
2		163	3205				66	769	64	153		...	57				57	1332
3	542	438	2307	405	291	315	278	635	256	612	554	\ldots	\ldots	188	189	1663	\ldots	5446
4	781	...	2479	...	173	...		440	..	214	\ldots		2819
5	1137	...	3678	\ldots	175	...		485	\cdots		151	543
6	289	...	1391		340	...	58		\ldots	...	\ldots	990	\ldots	688
7	...	\ldots	1809	659	2629	4419	...	5849
8	1857	...	\ldots	410	...		\ldots		\ldots	357	6628	...	4157
9	1590		19488	...	2080	819	...	740
10	1802	290	770	...		\ldots		263	232	..	\ldots		8270
11	\ldots	\ldots	1984	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	452	...	5767		\ldots	\ldots	.	294	8877
12		\ldots	1959	\ldots	...	\ldots	\ldots	\cdots	918	622	640	\ldots	13782
13	350	\ldots	2413	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	\ldots		\ldots	\ldots	1210
14	1113	...		\ldots		\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots	105	\cdots	\cdots	3688 174
15	264	\ldots	234	\ldots	44	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	174
Manufacturer No. 2																		
16	...	\ldots	2087		\ldots	\ldots	\ldots	...	\ldots	...	\ldots		...	\ldots	\ldots	261
17	\ldots	\cdots	1228	46	\ldots	\cdot	\cdots	\ldots	...	129	\ldots	\ldots	\ldots	...	\ldots	${ }^{600}$
18	...	107	1189	\ldots	\ldots		\ldots	...		\ldots	\ldots	\ldots	...	\ldots	\ldots	941
19	...	102	${ }^{483}$	\cdots	...	\ldots	\cdots	130	\ldots	...	387	\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	347 105
20	\ldots	\ldots	1340 730	\ldots				\ldots		\ldots				\ldots			\ldots	105 468
${ }^{21}$	\ldots	\ldots	730 1565	143 523	128 \ldots	\ldots	\ldots	\ldots	46	\ldots	\ldots	3150 \ldots	185 321		\ldots	\ldots	\ldots	468 9855
${ }_{23}^{22}$	\cdots	\ldots	1565 1780	${ }^{523}$	\ldots	\ldots	\ldots	84	\cdots	\ldots	\ldots	\ldots	${ }^{321}$	347	\ldots	\ldots	\ldots	9855 539
Manufacturer No. 3																		
24	\ldots	1202	2246		...	\ldots	...	769	\ldots		\ldots		6007	\ldots	5476
${ }^{25}$	\ldots		1480	1418	\cdots	\ldots	...	${ }^{31} 687$	\ldots	3212	\cdots	953	\ldots	\ldots	...	5203	\ldots	4101
26	\ldots	${ }_{271} 72$	3045 2355	\ldots	254	\cdot	\ldots	1020	.	${ }^{377}$	150	\cdots	\ldots		\ldots			${ }^{4} 277$
27	\ldots	276	2365		\ldots		150	...	\ldots	130	\ldots	1206 1131	130 929	3202 3609
28 29	\ldots	1448	1486 1060	\ldots	506	${ }_{479}^{213}$	\ldots	\ldots	466	${ }^{305}$	330	\cdots	\ldots	273	\ldots	1131	929	3690 960
30	\ldots		2359	\ldots			\ldots	\ldots	740	\ldots	\ldots	\ldots	...	2257	689	15854
${ }^{31}$	${ }^{823}$...	622	591	...	\ldots	\ldots	630	\ldots	4075
${ }^{32}$	\ldots	\ldots	1248	\ldots	\ldots	\ldots	...	\ldots	\ldots	...		\ldots	\ldots	\ldots				10826 9
33	...	\ldots	3143	710	381	...	387	9787

 $\vdots \vdots \vdots \vdots \vdots$

TABLE 2-Neutron activation analysis of automobile paints (concentration in ppm).

Sample	Source	Color	Cu	Na	Zn	Mn	Ba	Cr	Co	Sb	K	Ti	Br
1	AMC 1971	white	21	188	5038	2.5	7200		\ldots	1.7	232	830	31.3
2	AMC 1972	white	14	204	4788	0.74	\ldots	72		1.6	182	742	19.5
3	AMC 1973	white	19	136	4633	0.34	...		9.9	827	
4	Chrysler 1971	white	13	373	4038	2.7		\ldots	...			697	40.1
5	Chrysler 1972	white	8	255	3785	4.2	3269	\ldots	...	0.81	604	609	...
6	Chrysler 1973	white	8.4	109	2983	3.4	2900	\ldots	\ldots	\ldots	\ldots	1596	
7	Ford 1971	white	26	429	2312	6.4	...	\ldots		\ldots	\cdots	1892	52
8	Ford 1973	white	8	725	...	1.7	...	\ldots	11	823	
9	GMC Truck 1973	white	7	2.7	...	1.0	\ldots	\ldots	2201	\ldots	\ldots	1615	.
10	GMC 1973	white	8	553	...	1.8	\ldots	\ldots	...	\ldots	\ldots	1683	
11	GMC 1973	white		450		1.2						1564	55
12	AMC 1971	black	95.1	57.1	2978	27.2	97200	1034	0.55	2.7	400	...	
13	Chrysler 1971	black	27.2	72.2		50.5		206		\ldots	88
14	Chrysler 1973	black	7.5	39	\ldots	4.1	703	\ldots	\ldots		...		56
15	Ford 1971	black	66	58.6	...	17.7	378	\ldots	\ldots	\ldots		\ldots	71
16	Ford 1972	black	10	105		6.7	5264	\cdots	\ldots	. .	120	\ldots	415
17	GMC 1972	black	210	621	8.2	0.51	\ldots	.	\ldots	\ldots	...	\ldots	...

FIG. 1-Comparison of gamma ray spectra; (left) repaint from suspect's vehicle; (right) foreign repaint found on suspect's vehicle.

FIG. 2-Comparison of gamma ray spectra; (left) original refinish and primers from complainant's vehicle; (right) foreign paint found on suspect's vehicle.

FIG. 3-Comparison of gamma ray spectra; (left) refinish paint from complainant's vehicle; (right) foreign repaint found on suspect's vehicle.

FIG. 4-Comparison of gamma ray spectra; (left) repaint from suspect's vehicle; (right) foreign repaint found on complainant's vehicle.
TABLE 3-Case application of neutron activation of paints.

Sample	Source	Mo	Ti	Hg	Cr	Au	Cu	Sb	Mn	Sc	Fe	Co	Na	Zn	As
1	control repaint from from complainant's vehcile	399	755	\ldots	270	\cdots	119	868	1230	\cdots	220	164	1553	\ldots	\ldots
2	foreign repaint on suspect's vehicle	\ldots	646	\ldots	351	384	678	898	838	61	184	167	1490	\ldots	\ldots
3	original refinish and primers from complainant's vehicle	\ldots	1377	\cdots	763	31834	\ldots	2879	356	\ldots	\ldots	\ldots	1721	\ldots	\ldots
4	found on suspect's vehicle	\ldots	1955	1166	749	27351	\cdots	3222	412	\ldots	\ldots	\ldots	3749	\ldots	\ldots
5	control refinish from complainant's vehicle	\ldots	2513	\ldots	\ldots	\cdots	72013	\ldots	\ldots	\ldots	\ldots	\ldots	3972	\ldots	\ldots
6	$\begin{gathered} \text { foreign } \\ \text { suspect's vehincle } \end{gathered} \text { ren }$...	2979	\ldots	\cdots	2122	87020	\ldots	\cdots	\ldots	\ldots	\ldots	2987	\ldots	\cdots
7	control repaint from suspect's vehicle	\ldots	1797	\ldots	1174	\ldots	\ldots	\ldots	7041	\ldots	\ldots	\ldots	1646	692	944
8	foreign repaint found on complainant's vehicle	\ldots	1569	\ldots	1100	\ldots	\ldots	\ldots	5050	\ldots	\ldots	\ldots	1187	730	841

then a few minutes for counting and obtaining quantitative multielement concentration patterns. A technician can easily handle 30 to 50 samples per day.

Acknowledgments

The author wishes to express his thanks to Mr. D. M. Lucas, Mr. E. G. Clair, Dr. R. J. Prime, and Mr. R. Ord for help in various stages of this project. The technical assistance from Mr. S. Parthasarathy, Canadian International Development Agency trainee from Bhabha Atomic Research Centre, Bombay, India, is gratefully acknowledged.

References

[1] Erickson, N. E., Krishnan, S. S., and Perkons, A. K., "Present Status of NAA in Forensic Science,' Canadian Society of Forensic Science, Annual Meeting, Montreal, Sept. 1965.

Chemistry Section
Centre of Forensic Sciences
25 Grosvenor Street
Toronto, Ontario, Canada

[^0]: Received for publication 18 Dec. 1975; accepted for publication 25 Feb. 1976.
 ${ }^{1}$ Chemist, Chemistry Section, Centre of Forensic Sciences, Toronto, Ontario, Canada.

